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THE COMING AGE OF SUPER

MATERIALS

Or is it???3



Towards 2D super materials
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Graphene

Buckyballs CNTs Graphite

A. K. Geim,& K. S. Novoselov The rise of Graphene, Nat. Mater. 2007, 6 , 183.
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GRAPHENE VIBE

Image credit: Graphene Flagship Project
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GRAPHENE HYPE

Source: Graphene Flagship 
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Why 2D? 

Why do both chemists and material scientists like it??? HUGE surface area

Graphene: Its all surface

Flat, conductive, transparent, high 

surface area: Dream material for 

Sensing and energy application
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GRAPHENE HYPE



Money

Time

Quality

The Problem

Processing

Time consuming Processes

Production of CVD graphene

costs twice higher than ITO.

Quality varies from batch to batch

CNTs problem
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THE CASE OF CARBON NANOTUBE: THE

GOLD RUSH
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THE CASE OF CARBON NANOTUBE

The end of the golden age of CNT electrochemistry
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THE CASE OF CARBON NANOTUBE

It is all done with Metals!!!

Angew Chem Int Ed 45 (16):2533
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THE CASE OF CARBON NANOTUBE

Metallic impurities can be washed by HNO3

• Residual Metallic catalyst impurities cannot be washed out!!!

Reduction of Hydrogen peroxide

• Fe-based impurities are responsible!!!

Glucose Oxidation

• Cu-based and Fe-based impurities are responsible!!!

Electrocatalytic oxidation of amino acids, and sulfides

• Ni-based impurities are responsible!!!
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THE CASE OF CARBON NANOTUBE: THE

BIGGEST CHALLENGE



WHAT ABOUT GRAPHENE???
19
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GRAPHENE PRODUCTION
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A roadmap for graphene. Nature 2012, 490 (7419), 192-200.

2D MATERIALS PRODUCTION
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WHAT ABOUT GRAPHENE?

M. S. Goh, M. Pumera, Electrochem. Commun. 2010, 12, 1375.

Is single layer 
graphene really 

good?

The capacitance 
of SL-G is lower 

than FL-G

FL-G offers lower 
detection limit in 

DNA-sensing

A. Bonanni, M. Pumera, ACS Nano2011, 5, 2356.
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WHAT ABOUT CHEMICALLY MODIFIED

GRAPHENE?

M. S. Goh, M. Pumera, Electrochem. Commun. 2010, 12, 1375.

Surfactants 
significantly alter 

the properties.

The effect of 
impurities is 
unknown!!!

The effect of 
defects is not 
quantized!!!

A. Bonanni, M. Pumera, ACS Nano2011, 5, 2356.



Schematic for the preparation of chemically reduced graphene. 

Adriano Ambrosi et al. PNAS 2012;109:32:12899-12904

©2012 by National Academy of Sciences



STEM images of (A) natural graphite, (B) chemically reduced graphene produced from natural 

graphite, (C) synthetic graphite, and (D) chemically reduced graphene produced from synthetic 

graphite. 

Adriano Ambrosi et al. PNAS 2012;109:32:12899-12904

©2012 by National Academy of Sciences



Common synthesis methods for the preparation of RGOs using graphite as a starting material, 

which ultimately leads to varying contamination arising from impurities within the chemical 

agents used. 

Colin Hong An Wong et al. PNAS 2014;111:38:13774-13779

©2014 by National Academy of Sciences
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THE CASE OF CHEMICALLY MODIFIED

GRAPHENE

Schematic representation of the available surface area of graphene for molecular interaction. a

Pure surface vs b contaminated surface. The red spheres represent molecules that can interact 

with the surface, while the orange rafts represent the contaminants
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THE CASE OF CHEMICALLY MODIFIED

GRAPHENE

The extent of silicon contamination on

the surface of typical solvent-

exfoliated graphene derived from low-

purity graphite (98%

purity). a HAADF image of a typical

graphene sheet. b Detail of HAADF

image of the boxed region in a. c EDS

spectrum of the boxed region in a.The

strong Si peak at 1.739 keV confirms

the presence of significant

contamination. d, e A comparison of

the EDS spectra of the contaminated

area (d) and non-contaminated and

monolayer area (e), which are marked

as red and green boxes in b,

respectively
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THE CASE OF CHEMICALLY MODIFIED

GRAPHENE

The extent of silicon contamination on

the surface of typical low purity

graphite (98% purity). a HAADF

image of a typical graphite platelet.

Details of the various boxed regions

in a showing: b an iron

contamination, c a clean area with a

perfect graphitic lattice structure,

and d a silicon contaminated area. e–

g EDS spectra of b–d, respectively,

showing iron contamination, clean

graphene and silica contamination,

respectively
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THE CASE OF CHEMICALLY MODIFIED

GRAPHENE

The effect of washing on typical

graphene oxide derived from low-

purity graphite (98% purity). a, b GO

washed with 5 M NaOH at

120 °C. a Restacked GO sheets due to

the basic washing. b Detail of the

boxed region in a showing that the

silicon-rich impurities have become

more dispersed but have not been

removed. c Chemically reduced GO

showing the silicon-rich

contamination. d NH4F washed GO.

The surface appears cleaner, but this

treatment also causes significant

agglomeration and restacking of

sheets. e–g A comparison of the EDS

spectra of the NaOH washed,

chemically reduced and NH4F washed

GO in b–d, respectively
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THE CASE OF CHEMICALLY MODIFIED

GRAPHENE

Characterisation of typical GO films

and dispersions prepared from

graphite feedstock of different

purities. a, b Comparison of the XPS C

1s spectral region of GO

films. c Comparison of the XPS Si 2p

spectral region of GO

films. d Comparison of the atomic

concentration of silicon as a function of

etching time.
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THE CASE OF CHEMICALLY MODIFIED

GRAPHENE
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THE CASE OF CHEMICALLY MODIFIED

GRAPHENE

e Double-layer supercapacitor performance of the reduced GO electrodes for

the three different materials. The representative cyclic voltammograms (CVs)

that were obtained using a two-electrode cell at 100 mV/s and using a 1 M

H2SO4 electrolyte; f CV of the rGO electrode made from 99.9% purity graphite

as a function of scan rates
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CURRENT RESEARCH TREND ON

GRAPHENE

Can the oxygen on graphene oxide be removed 
completely, and yield perfect, high-quality 
graphene?

Can liquid exfoliation give bigger sheets, and 
more routinely give only single layer graphene?

Is there a way to transfer graphene perfectly, 
leaving no contaminants, wrinkles, or defects?

Can we find a way to grow perfect graphene on 
any surface that we want?



CONCLUSION
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Challenges slowing down the adoption

36

Nature Nanotechnology 9, 730–734 (2014) Graphene Oxide-Based Composite Materials, in Graphene Oxide: 

Fundamentals and Applications , John Wiley & Sons (2016)Case Closed, graphene is the next carbon 

nanotube, LUX Research Report (2015)



Opportunities
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Water Desalination

Energy Harvesting 

and Storage

Sensors, 

Bionic Devices

Multifunctional

Composites

Fibers

Yarns

Tapes



Thanks!!!
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